If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-1050=0
a = 1; b = 1; c = -1050;
Δ = b2-4ac
Δ = 12-4·1·(-1050)
Δ = 4201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4201}}{2*1}=\frac{-1-\sqrt{4201}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4201}}{2*1}=\frac{-1+\sqrt{4201}}{2} $
| -32-6v=4(6-5v) | | 35^2-22k+7=4 | | 5v+3=-17 | | -4*1+8=y | | -4-16=-4(1+2m)+8 | | c+-918=-73 | | 20×+5=24x-1 | | 4(6b-7)=6b+26 | | 7n-4n+5=6n+7 | | 5x+2=23; | | 25x+25x=120+50x | | g+177=831 | | 6|x|-2=22 | | 13=5w+4-9w | | −2.1=w−8 | | r/9=-26 | | -11p-5.24=-7.5p+5.89+0,07 | | 6x+7=4-3(2x1) | | 2z/7-6=3 | | 5x+40=4x-20 | | 7/6x+3=1/6x+6 | | 4(3-2a)=36 | | 35-3x=-(7x-3) | | 0.4(2-q)=0.2(q+7 | | j+204=989 | | 7g+5-9g=8-2g-3 | | 2x/3+x/7=4 | | 31h=558 | | (1/3)^n=9 | | 98-w=235 | | 9f=12f-15 | | t-759=-350 |